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1 ABSTRACT

Cryptocurrency price prediction is a very challenging
problem in asset-pricing, and numerous deep learning
methods were devised to predict the price. However,
not only existing methods do not perform well in long
term prediction, their methods do not take advantage
of the market dynamic’s information. In this project, a
new model is created to better predict long term price
behavior, utilizing prior knowledge onmarket dynamics.
Out of all the models tested, the model that learned the
market dynamics the best is the new proposed model,
N-CATS. Code is available in https://github.com/jayjay-
park/N-CATS.git

2 INTRODUCTION

Due to high volatility, predicting cryptocurrency price
have been a difficult problem to solve. Especially, study
conducted by Yang et al. point out how cryptocurrency
price prediction is even more difficult problem to solve
than stock price prediction through analysis with
entropy[1]. A study conducted by Yi et al. shows that
the cryptocurrency market is weakly market efficient,
which just means that predicting crypto-asset price with
just past trends of price is impossible[2].
However, some recent papers claimed the cryptocur-

rency market shows a chaotic behavior, which implies
market is a type of a chaotic dynamical system. This
introduces exciting new possibilities for how we can
approach the challenge of modeling the behavior of
the cryptocurrency market. That is, from just a simple
regression problem, we can now use properties of a
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chaotic dynamical system as inductive bias in model
development.
Some previous approaches in predicting crypto-asset

price using Neural Networks include Long Short-Term
Memory(LSTM)[3]. However, as it shown in the Result
section and previous study[1], LSTM does not perform
well nor is it robust enough for cryptocurrency price
prediction.
Thus, in this project, a newmethod, N-CATS, attempts

to learn both market’s chaotic dynamic along with past
trends of crypto-asset price, with the new auto-correlation
loss function. Specifically, this study focuses on answer-
ing following research questions: 1. Can we verify if
cryptocurrency market is indeed chaotic? 2. How does
baseline models perform in predicting price? 3. How can
we make a model learn market dynamics information?
4. How does the new model perform?

3 BACKGROUND INFORMATION

3.1 Measurements of a Chaotic System

3.1.1 Lyapunov Exponent. A chaotic system is a deter-
ministic dynamical system that is extremely sensitive
to initial point[4]. The chaotic system’s sensitivity to
initial point can be well explained with lyapunov expo-
nent as lyapunov exponent measures the sensitivity to
initial point.
When 𝑍 (𝑡) and 𝑍0(𝑡) are infinitesimally close trajec-

tories, let 𝛿𝑍 (𝑡) = 𝑍 (𝑡) −𝑍0(𝑡) and 𝛿𝑍0 = 𝑍 (0) −𝑍0(0),
then 𝜆 is the Lyapunov exponent in the following equa-
tion.

|𝛿𝑍 (𝑡) | ≈ 𝑒𝜆𝑡 |𝛿𝑍0 | 𝑠 .𝑡 . 𝑡 ∈ R, 𝜆 ∈ R

When 𝜆 > 0, system is defined as chaotic system as
it means that the difference in two close trajectories
exponentially diverge, thus becoming chaotic system.
In this project, lyapunov exponent is used to validate

if the model learned the chaotic system or not, by seeing
if it is positive number. Then, we can also compare how
close the reproduced lyapunov exponent is compared to
lyapunov exponent from the original time series data.

3.1.2 Auto-Correlation. Auto-correlation is the correla-
tion between a time-series and delayed version of itself.
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When time-lag is define as 𝜏 , window-size is 𝑇 , and x
is a state variable, auto-correlation 𝐶 (𝑥, 𝜏) is defined as
the following.

𝐶 (𝑥, 𝜏) = E(𝑥𝑡𝑥𝑡+𝜏 ) − E(𝑥𝑡 )E(𝑥𝑡+𝜏 )

=
1
𝑇

∑︁
𝑡≤𝑇

𝑥𝑡𝑥𝑡+𝜏 −
1
𝑇

∑︁
𝑡≤𝑇

𝑥𝑡
1
𝑇

∑︁
𝑡≤𝑇

𝑥𝑡+𝜏

If a system’s dynamic is chaotic, then auto-correlation
should converge to 0 as value of 𝜏 increases[5].

3.1.3 Multi-Step Prediction. Although multi-step pre-
diction is a more general term used in time-series mod-
elling, if a model learned a correct type of chaotic sys-
tem, then model necessarily will have reasonably low
multi-step prediction error. Unlike one-step prediction,
error accumulates, thus it gives more insight in howwell
model performs comapred to one-step prediction. With
the learned model �̂� , then for 𝑡 ∈ [0, ..., 𝑁 ], we follow
the following steps to compute multi-step prediction.
𝐷𝑒𝑓 𝑖𝑛𝑒 𝑇 = [0, ..., 𝑁 ]
for t in T do

𝑥𝑡+1 = �̂� (𝑥𝑡 )
end for
In summary, in this project, statistical measures of

chaotic system are used in two different way: 1. to assist
with training by using auto-correlation, 2. verify if a
model learned a true dyanmics or not by using lyapunov
exponent, multi-step prediction.

3.2 Framework for Learning Time Series

3.2.1 Long-Short TermMemory. Long-Short TermMem-
ory proposed by Hochreiter et al. attempts to solve long
term dependency and vanishing gradient problem of
Recurrent Neural Network[6]. It is consisted of three
gates: input gate, 𝑖𝑡 , forget gate, 𝑓𝑡 , and output gate, 𝑜𝑡 .

𝑖𝑡 = 𝜎 (𝑤𝑖 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖)
𝑓𝑡 = 𝜎 (𝑤 𝑓 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 )
𝑜𝑡 = 𝜎 (𝑤𝑜 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 )
𝑠 .𝑡 . 𝜎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ()

𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

ℎ𝑡−1 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓 𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒

𝑥𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑝𝑢𝑡

𝑏 = 𝑏𝑖𝑎𝑠

To generate memory vector,
𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐)
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡
ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡 )

𝑐𝑡 is a candidate for memory, 𝑐𝑡 is memory at time 𝑡 .
When ℎ𝑡 is passed through softmax layer, we get the
predicted output, 𝑦𝑡 .

3.2.2 Neural Ordinary Differential Equation. Neural Or-
dinary Differential Equation is a framework proposed
by Chen et al. for learning dynamical system[7]. When
𝑥 is an initial state,ℎ is a neural network that models the
dynamics, and 𝜙ℎ are the time integrator of ℎ, Neural
ODE is defined as such:

𝑑

𝑑𝑡
𝜙𝑡
ℎ
(𝑥) = ℎ(𝜙𝑡

ℎ
(𝑥)) 𝑡 ∈ R+, 𝑥 ∈ R𝑑 , 𝜙𝑡

ℎ
(𝑥) ∈ R𝑑

One of the few limitations of Neural ODE is that it
is for learning deterministic system, which makes it
difficult to learn stochastic or highly volatile system[8].

3.2.3 Neural Stochastic Differential Equation. To over-
come such limitation of Neural ODE, Kidger et al. pro-
posed a method which fits Neural Stochastic Differential
Equation(Neural SDE) with GANs[9]. When 𝑡 ∈ [0,𝑇 ],
𝑥 is a state variable, and 𝑦𝑡 is a solution, Neural SDE is
defined as following.

𝑑𝑥𝑡 = 𝜇𝜃 (𝑡, 𝑥𝑡 )𝑑𝑡 + 𝜎𝜃 (𝑡, 𝑥𝑡 ) ◦ 𝑑𝑊𝑡

𝑦𝑡 = 𝛼𝜃𝑥𝑡 + 𝛽𝜃

In here, 𝜇𝜃 is a neural network that approximates drift,
and 𝜎𝜃 is a nueral network that approximates diffusion.
In the current project, instead of using GAN to make

Neural SDE fit, a new loss function is used to train latent
Neural SDE.

4 EXPERIMENT

4.1 Dataset

The dataset used for the experiment was obtained from
Kaggle Bitcoin Historical Dataset1.
The Dataset includes every 1 minute historical price

in 2021, including features like Unix timestamp, dates,
symbol, opening, high, low, closing, Volume and Volume
Base.
The task of this project is a univariate time series

prediction; therefore, only closing price was used among
1https://www.kaggle.com/datasets/prasoonkottarathil/btcinusd/?select=BTC-
2021min.csv
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Fig. 1. Plot of Train, Test Dataset with Training-Test Data Split Shown

Learning
Rate Epochs Architecture Feature

LSTM 1𝑒 − 3 1000 1 LSTM layer,
2 Linear layer

window
size of 10

Neural ODE 5𝑒 − 4 1000 6 Linear Layer

N-CATS 5𝑒 − 4 800 2 Linear layer latent
dim of 64

Table 1. Summary of Hyperparameter Setting

multiple features. For the data pre-processing, min-max
normalization is used. Then, data is splitted by 70:30
ratio, thus having training data size of 7546 and test
data size of 3234.

4.2 Experiment Setting

For the baseline models, two types of model, Long-Short
Term Prediction(LSTM) and Neural Ordinary Differen-
tial Equation(Neural ODE), that are frequently used for
time series prediction are selected[3].
Following is the summary of hyper-parameter setting

for the experiment. Training algorithm used is AdamW,
with different learning rates per model. Different num-
bers of epoch are used as well. Rest of the details are
included in the following table.

5 METHOD

5.1 Learning Problem

In this supervised learning problem, we define empirical
risk minimization problem as the following: 𝐺𝑖𝑣𝑒𝑛 𝑆 =

{𝑧𝑖}𝑚𝑖=1 = {(𝑥𝑖 , 𝑦𝑖)}𝑚𝑖=1, 𝑥 ∈ R𝑑 ,

R(ℎ) = E
𝑆∼𝐷𝑚

R̂𝑠 (ℎ) = E
𝑆∼𝐷𝑚

1
𝑚

𝑚∑︁
𝑖=1

𝑙 (𝑧𝑖 , ℎ)

𝑀𝑆𝐸_𝑙𝑜𝑠𝑠 = 𝑙 (𝑥, ℎ) = ∥𝑦𝑖 −𝑚𝑜𝑑𝑒𝑙 (𝑥𝑖)∥2

Fig. 2. Architecure of N-CATS

5.2 N-CATS: Neural Chaotic Auto-correlation for Time
Series

5.2.1 Architecture. In an attempt to make a model learn
market dynamics, N-CATS is proposed.
Like shown in the figure, N-CATS is consisted of three

parts. Encoder that transform state variable to latent di-
mension, latent model that learns the dynamic in higher
dimension, and lastly, decoder that returns prediction
in original 𝑑 dimension.
Latent model can be anything like LSTM, Neural ODE.

But for this project, Neural SDE is chosen as latent
model.

5.2.2 Learning Problem. The new model is then trained
with new loss function. This new loss function is Mean
Squared Error losswith norm difference of auto-correlation
as regularization term. 𝜆 is a regularization parameter,
and 𝑇 is windown-size. Time-lag is defined as 𝜏 .

L𝑛𝑒𝑤_𝑙𝑜𝑠𝑠 = L𝑀𝑆𝐸 + 𝜆 ∗ L𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑠 .𝑡 . 𝜆 ∈ [0, 1]
L𝑎𝑢𝑡𝑜−𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∥E(𝑥𝑡𝑥𝑡+𝜏 ) − E(𝑥𝑡 )E(𝑥𝑡+𝜏 )∥

= ∥ 1
𝑇

∑︁
𝑡≤𝑇

𝑥𝑡𝑥𝑡+𝜏 −
1
𝑇

∑︁
𝑡≤𝑇

𝑥𝑡
1
𝑇

∑︁
𝑡≤𝑇

𝑥𝑡+𝜏 ∥

6 RESULTS

6.1 RQ1: Can we verify if crypto-currency market is
indeed chaotic?

First, to approximate lyapunov exponent from time se-
ries, function2 that implements algorithm of Rosenstein
et al. is used[10].
2https://pypi.org/project/nolds/
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Algorithm 1 Training the N-CATS

Input: {(𝑥𝑡 )}𝑀𝑖=0
𝜆 ∈ [0, 1]
𝜏 = [0, ...,𝑉 ]
for i in 1,2, ..., N do

𝑒𝑡 = Encoder(𝑥𝑡 )
𝑙𝑡 = Latent Model(𝑒𝑡 )
𝑜𝑡 = Decoder(𝑙𝑡 )
MSE_loss = ∥𝑜𝑡 − 𝑥𝑡+1∥2
AC_loss =

∥ 1
𝑇

∑
𝑡≤𝑇 𝑥𝑡+1𝑥𝑡+1+𝜏

− 1
𝑇

∑
𝑡≤𝑇 𝑥𝑡+1

1
𝑇

∑
𝑡≤𝑇 𝑥𝑡+1+𝜏 ∥

- ∥ 1
𝑇

∑
𝑡≤𝑇 𝑜𝑡𝑜𝑡+𝜏 − 1

𝑇

∑
𝑡≤𝑇 𝑜𝑡

1
𝑇

∑
𝑡≤𝑇 𝑜𝑡+𝜏 ∥

total_loss = MSE_loss + 𝜆*AC_loss
total_loss.backward()
optimizer.step()

end for
Return: {𝑜𝑖}𝑁𝑖=1

0 2000 4000 6000 8000 100000.1

0.0

0.1

0.2
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C x
,x

(
)

Fig. 3. Auto-correlation of Entire Dataset

The computed lyapunov exponent of thewhole dataset
is 0.001927. However, it is notable that as we don’t ex-
actly know the true dimension of the cryptocurrency
market dynamics. Thus, when computing lyapunov ex-
ponent using Eckmann et al.’s method, with arbitrary
dimension of 2, the lyapunov spectrum returned is [
0.2607571, -0.1330105]. From this result, we can verify
that cryptocurrency market is indeed chaotic system.
When plotting the auto-correlation of dataset, we can

also observe that it is converging to 0, which is expected
behavior for chaotic system.

6.2 RQ2,3: How does models perform in predicting price?

Regarding one-step prediction, LSTM did not perform
that well as we can observe from the table and the one
step prediction plot for the whole dataset. This is due
to LSTM’s vanishig gradient problem[11].

0 1000 2000 3000 4000 5000 6000

0.0

0.1

0.2

0.3

0.4

C x
,x

(
)

Fig. 4. Auto-correlation of Test Dataset

Train Loss
(One-Step)

in MSE or AC Loss

Test Loss
(One-Step)
in MSE

LSTM 0.04117 0.11384
Neural ODE 3.2348𝑒 − 05 1.0721e − 05
N-CATS 0.0022 0.00013

Table 2. One Step Prediction Loss Loss Table

Multi-Step
Prediction Loss Norm Diff LE

Neural ODE 16.9741 0.0001
N-CATS 6.5225 2.8197e − 05

Table 3. Multi-step Prediction Error & Norm Difference of Lyapunov Expo-
nent Table

Interestingly, for Neural ODE, test losswas low enough
and the one step prediction plot looked good as well.
However, when looking at the multi-step prediction, it
is apparent that what Neural ODE learned is not the
true chaotic system, which will be discussed in-depth
in the next section. One of the possible reason why it is
performing poorly on multi-step prediction is because
Neural ODE is for learning deterministic system.
Overall, when looking at the plot, both Neural ODE

and N-CATS performed well in one-step prediction.
Finally, for N-CATS, for training loss, new loss func-

tion was used, so it would not be fair to compare the
training loss. However, for test loss, Means-Squared
Loss, is not lower than that of Neural ODE. If N-CATS
were to run on even longer epoch, the same 1000 epoch,
then it is expected to decrease even lower and show
similar performance as Neural ODE.

6.3 RQ4: Are models learning dynamics?

To assess if the model is learning the correct dynamics,
following errors are computed.
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Fig. 5. One-Step Prediction Plot for LSTM from 0 to 10783 days

Fig. 6. One-Step Prediction Plot for Neural ODE from 0 to 10783 days

Fig. 7. One-Step Prediction Plot for N-CATS from 0 to 1600 days

Fig. 8. Loss Plot for LSTM

Fig. 9. Loss Plot for Neural ODE

Fig. 10. Loss Plot for N-CATS
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Fig. 11. Multi-Step Prediction for Neural ODE on Unseen Data

Fig. 12. Multi-Step Prediction for N-CATS on Unseen Data

𝑁𝑜𝑟𝑚_𝐷𝑖 𝑓 𝑓 _𝐿𝐸 = ∥𝐿𝐸_𝑡𝑟𝑢𝑒_𝑑𝑎𝑡𝑎−𝐿𝐸_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑑𝑎𝑡𝑎∥

𝑀𝑢𝑙𝑡𝑖_𝑆𝑡𝑒𝑝_𝐸𝑟𝑟 = ∥𝑋 − �̃� ∥
𝑠 .𝑡 . �̃� =𝑚𝑢𝑙𝑡𝑖_𝑠𝑡𝑒𝑝 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠

When testing with lyapunov exponent and multi-
step prediction error to assess if a model is learning
the correct system, among the two models, N-CATS
showed the smallest multi-step prediction error, 6.5225,
and the smallest norm difference of lyapunov exponent,
2.8197𝑒 − 05.
As shown in Fig 11 and 12, Neural ODE is not really

learning dynamic when N-CATS is at least behaving
similar although it is not exactly the same. However, af-
ter conducting grid search and training in longer epoch,
it is expected to learn a lot better in multi-step predic-
tion.
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7 FUTURE WORK

Some of the future work that can be done include 1.
conduct grid search to find out optimal hyper-parameter
setting for N-CATS, 2. Try out different kind of latent
model, 3. Try to make model size smaller so that it is
able to conduct experiment under the same condition.
(for e.g., same 1000 epoch for training)

8 CONCLUSION

In this project, a newmodel that employs information on
market dynamics for predicting cryptocurrency price is
proposed. Model validation on whether or not it learned
the dynamic is conducted using Lyapunov exponent,
and multi-step prediction.
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